Focal Laser Ablation of Prostate Cancer: Numerical Simulation of Temperature and Damage Distribution
نویسندگان
چکیده
BACKGROUND The use of minimally invasive ablative techniques in the management of patients with low grade and localized prostate tumours could represent a treatment option between active surveillance and radical therapy. Focal laser ablation (FLA) could be one of these treatment modalities. Dosimetry planning and conformation of the treated area to the tumor remain major issues, especially when, several fibers are required. An effective method to perform pre-treatment planning of this therapy is computer simulation. In this study we present an in vivo validation of a mathematical model. METHODS The simulation model is based on finite elements method (FEM) to solve the bio-heat and the thermal damage equations. Laser irradiation was performed with a 980 nm laser diode system (5 W, 75 s). Light was transmitted using a cylindrical diffusing fiber inserted inside a preclinical animal prostate cancer model induced in Copenhagen rats. Non-enhanced T2-weighted and dynamic gadolinium-enhanced T1-weighted MR imaging examinations were performed at baseline and 48 hours after the procedure. The model was validated by comparing the simulated necrosis volume to the results obtained in vivo on (MRI) and by histological analysis. 3 iso-damage temperatures were considered 43° C, 45° C and 50° C. RESULTS The mean volume of the tissue necrosis, estimated from the histological analyses was 0.974 ± 0.059 cc and 0.98 ± 0.052 cc on the 48 h MR images. For the simulation model, volumes were: 1.38 cc when T = 43° C, 1.1 cc for T = 45°C and 0.99 cc when T = 50 C°. CONCLUSIONS In this study, a clear correlation was established between simulation and in vivo experiments of FLA for prostate cancer.Simulation is a promising planning technique for this therapy. It needs further more evaluation to allow to FLA to become a widely applied surgical method.
منابع مشابه
Laser Interstitial Thermo Therapy (LITT) for Prostate Cancer Animal Model: Numerical Simulation of Temperature and Damage Distribution
Laser interstitial thermotherapy (LITT) is a cancer treatment technique in which laser fibers are introduced inside the tumor. While it destroys deep tumors, the LITT procedure allows minimizing the impact on adjacent healthy structures. Image guided focal photothermal ablation of low risk and low volume prostate cancer is feasible. However, dosimetry planning and conformation of the treated ar...
متن کاملNumerical Study for Optimizing Parameters of High-Intensity Focused Ultrasound-Induced Thermal Field during Liver Tumor Ablation: HIFU Simulator
Introduction High intensity focused ultrasound (HIFU) is considered a noninvasive and effective technique for tumor ablation. Frequency and acoustic power are the most effective parameters for temperature distribution and the extent of tissue damage. The aim of this study was to optimize the operating transducer parameters such as frequency and input power in order to acquire suitable temperatu...
متن کاملNumerical simulation of laser beam welding of Ti6Al4V sheet
This paper was aimed to report the 3D finite element analysis simulation of laser welding process of Ti6Al4V 1.7 mm sheets in butt joint in order to predict the temperature distribution, hardness, and weld geometry. The butt-joint welds were made using CO2 laser with the maximum power of 2.2 kW in the continuous wave mode. A part of the experimental work was carried out to verify the weld geome...
متن کاملPrediction of the Damage Coefficient in a Prostate Cancer Tissue during Laser Ablation Using Artificial Neural Networks
An attempt has been made to simulate the temperature distribution in prostate cancer tissue during laser ablation using finite element approach. Parameter studies have been carried out. The results have been consolidated using tool of artificial intelligence-Artificial Neural Network. Feed forward back propagation network has been used for this purpose. It has been found that artificial neural ...
متن کاملEffect of Pullback Speed and the Distance between the Skin and Vein on the Performance of Endovenous Laser Treatment by Numerical Simulation
Introduction: Endovenous laser treatment (ELT) is a new treatment method for the reflux of the great saphenous vein. A successful ELT is dependent on the selection of optimum parameters required to achieve optimal vein damage while avoiding side effects including skin burns. The mathematical modeling of ELT can be used to understand the process of ELT. This study was conducted to examine the ef...
متن کامل